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Abstract—Spaceborne microwave synthetic aperture radar 
(SAR), with its high spatial resolution, large area coverage, 

day/night imaging capability, and penetrating cloud capability, 

has been used as an important tool for tropical cyclone monitoring. 

The accuracy of locating tropical cyclone centers has a large 

impact on the accuracy of tropical cyclone track prediction. 
Usually the center of a tropical cyclone can be accurately located 

if the tropical cyclone eye is fully covered by a SAR image. In 

some cases, due to the limited coverage of the SAR, only a part of a 

tropical cyclone was imaged without the eye. From a SAR image 

processing point of view, these facts make the automatic center 
location of tropical cyclones a challenging work. This paper 

addresses the problem by proposing a semi-automatic center 

location method based on salient region detection and pattern 

matching. A salient region detection algorithm is proposed in 

which the salient region map contains mainly the rain bands of a 
tropical cyclone in a SAR image. The pattern matching problem is 

transformed into an optimization problem solved by using the 

particle swarm optimization algorithm (PSOA) to search the best 
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estimated center of a tropical cyclone. To estimate the accuracy of 

the located center, we compare the results with the National 
Oceanic and Atmospheric Administration National Hurricane 

Center’s Best Track Data. Experiments demonstrate that the 

proposed method achieves good accuracy for locating the centers 

of tropical cyclones from SAR images that do not contain a 

distinguishable eye signature. 

 
Index Terms—tropical cyclone, synthetic aperture radar,  

pattern matching, Particle Swarm Optimization algorithm 
(PSOA). 

 

I. INTRODUCTION 

ROPICAL cyclones may cause major disasters and have a 

strong destructive potential to bring significant personal 

and economic loss to coastal areas. The location of the center of 

a tropical cyclone is key information that is needed for timely  

and accurate tropical cyclone forecasting. It closely relates to 

the position and motion tendency of a tropical cyclone and is 

vital for prediction, to enable people to avoid or prevent disaster 

caused by strong winds and torrential rain. 

Since the launch of the first polar-orbit ing meteorological 

satellite in the early 1960s, remote sensing techniques have 

proved to be a useful method for tropical cyclone analyses and 

forecasting (e.g. [1]- [5]). Satellite  cloud images, acquired by 

passive remote-sensing instruments operating in the visible and 

infrared (IR) bands, vividly describe cloud-level tropical 

cyclone horizontal structures with large area coverage and 

frequently repeated observations [6]. However, due to cloud 

cover and rain effects, the inner core structures and air-sea 

interaction near the ocean surface cannot be directly observed 

with visible o r IR sensors. The microwave scatterometer is an 

active remote-sensing sensor. It works well at n ight and has a 

wide range of observation. In addition, it can simultaneously 

obtain wind speed and the wind direction of a wind field on the 

sea surface [7]. Weather radar is a kind of active microwave 

radar that emits radar pu lses to the sky and then receives the 

radar backscatter. It can identify a tropical cyclone center based 

on echo signal intensity [8]. Data from the Tropical Rainfall 

Measuring Mission (TRMM)/Global Precip itation 

Measurement (GPM) can be used to research the precipitation 
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distribution or the intensity of a tropical cyclone (e.g. [9] and 

[10]). 

Spaceborne synthetic aperture radar (SAR) has become 

another popular tool for tropical cyclone monitoring over 

recent years. This is a type of active microwave radar that emits 

radar pulses that can penetrate through clouds and then receive 

the radar backscatter from the Earth’s surface. Therefore, SAR 

can take images of the Earth’s surface and these images can 

reveal detailed structures of tropical cyclones on the ocean 

surface [1]. In addit ion, SAR has a h igh spatial resolution 

(10-100m) and can operate day and night under almost all 

weather conditions. Katsaros et al. (2002) discussed the 

usefulness of SAR in tropical cyclone monitoring [11]. 

Horstmann et al. (2005) studied sea surface tropical cyclone 

wind retrievals with RADARSAT-1 SAR with an existing 

geophysical model function, i.e., CMOD5 [12]. Yang et al. 

(2011) assessed the impact of radar calibrat ion accuracy on the 

retrieval of wind speeds with a high degree of accuracy 

interpretation [13]. Recently, Li et al. (2013) systematically  

analyzed 83 typhoons and hurricanes observed in 

RADARSAT-1 and ENVISAT SAR images and manually  

extracted tropical cyclone morphology from these images [1]. 

These studies illustrate that extract ing quantitative tropical 

cyclone information from SAR images has been a focus of 

research. 

SAR images of tropical cyclones on the sea surface show the 

sea surface imprint of tropical cyclones and are related to the 

surface roughness affected by sea surface winds, rain  

roughening of the surface, waves and so on [14]. A complete 

tropical cyclone in a SAR image appears as bright-dark spiral 

patterns. There is almost no rain and wind within a t ropical 

cyclone eye area, so the radar backscattering from this part of 

the sea surface is relatively weak compared to signal returns 

from other areas in a tropical cyclone. High winds and rain 

result in a brighter area around the eye wall. Therefore, for the 

tropical cyclone center eye detection, Du et al. (2003) proposed 

a wavelet analysis method to extract tropical cyclone eye shape 

and size [6], Jin  et al. (2014) proposed a labeled watershed 

segmentation method to extract the hurricane eye and 

compared automat ic ext raction results with manual ext raction 

results [15]. Recently, Zheng et al. (2016) extracted typhoon 

eyes in SAR images using two newly developed algorithms and 

showed good results when validated against  the tropical 

cyclone best track data sets [16]. 

However, not every tropical cyclone has an obvious eye 

feature in a SAR image. There may even be no eye where a 

tropical cyclone is in the developing period or the declin ing 

period. Sometimes limited by the capture range of radar, a SAR 

image may contain parts of a tropical cyclone without an eye. 

Generally speaking, methods to estimate the center of a tropical 

cyclone automatically or semi-automat ically fall into two 

categories: wind field analysis and pattern matching. Wind 

vector fields need a sequence of images. However, SAR 

provides only a single snap view at a t ime and therefore it is 

difficult to determine the wind direct ion from a single image. 

Pattern matching methods can be performed using only a single 

image. So we considered estimating the center position with a 

pattern matching method. Researchers have previously tried to 

locate the center of tropical cyclones using pattern matching 

methods in satellite cloud images  that do not contain eye 

informat ion. Wang et al. (2006) developed an 

auto-center-locating algorithm based on Hough transform [17]. 

They first locate the rain bands using image segmentation and 

mathematic morphology, and then match the skeleton lines of 

rain bands with a logarithm spiral using Hough transform. 

Segmentation methods such as threshold segmentation are used 

here to obtain the rain bands of a t ropical cyclone from a SAR 

image. This is a straightforward but not very effective approach 

as rain bands cannot be distinguished from clouds with a 

similar reflectivity. Besides, the Hough transform has its 

limitat ions such as large calcu lations and poor detection 

performance when there is noise in an  image. Xu  et al. (2009) 

proposed a spiral rain band segmentation method by 

transforming it to the problem of classificat ion with a support 

vector machine [18]. However, samples are chosen manually in  

this method. Wong et al. (2005) proposed a tropical cyclone 

eye fixing method using a genetic algorithm with temporal 

informat ion [19]. Later in 2008, they developed a more 

automatic framework for t ropical cyclone eye fixing with a 

method using a genetic algorithm [20]. Good results indicate 

that this genetic algorithm is robust and can be widely used. 

However, the extract ion of regions of interest (the positions 

where the centers of the tropical cyclones may lie) needs the 

assistance of the previous image or forecaster. Moreover, the 

matching model used in the above work is a logarithm spiral, 

which looks similar to the geometrical structure of tropical 

cyclones but is not suitable for the accurate matching of diverse 

tropical cyclones. Besides, the matching of a logarithm spiral 

needs precise extraction of skeleton lines.  

Taking advantage of the characteristics of tropical cyclones 

in SAR images, we developed a semi-automatic t ropical 

cyclone center location method by combining our proposed 

salient region detection method with a part icle swarm 

optimization algorithm (PSOA). The algorithm flowchart is 

shown in Fig. 1, and it mainly contains three steps. Step 1), rain  

bands are extracted using a salient region detection algorithm. 

Firstly, we calculate the standard deviation of gray values of 

image patches and get a gray value contrast feature map. 

Secondly, we calculate the Gabor features of a denoised 

tropical cyclone image and combine d ifferent orientation maps 

into a Gabor feature map. Thirdly, we combine the gray value 

contrast feature map and the Gabor feature map by weights to 

get the salient region map. Rain bands are mainly contained in  

the salient region map Step 2), the salient region map is 

segmented into a binary image and rain bands are selected by 

two filter criteria. Then we extract the skeleton lines. To get 

smooth lines for better matching, we apply expansion operators 

and pruning before and after the extraction. Step 3), we 

transform the matching problem into an optimization prob lem, 

and then apply the PSOA to estimate the optimum solution, 

which corresponds to the center of the tropical cyclone. To  

estimate the correctness of the located center, we compare the 

results with the National Oceanic and Atmospheric 

Admin istration National Hurricane Center’s Best Track Data 
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sets. Experiments demonstrate that the proposed image 

processing method can correctly locate a trop ical cyclone 

center in a SAR image with good accuracy. There are several 

parameters that need to be tuned. This semi-automatic method 

makes use of the gray level information and orientation 

informat ion of a SAR image while does not require other 

observational data. At this point, although it is impossible to 

propose a fully-automatic image processing method to 

complete the same task, we will consider solving the 

challenging problem by combin ing data from other 

instruments. 

The rest of the paper is organized as follows. Section 2 

details our method. Experiment results using a set of 

RADARSAT-1 SAR images and comparison of the PSOA 

results and GA results are presented to verify  the efficiency of 

our method in section 3. The conclusion is given in section 4. 

II. SALIENT REGION DETECTION AND PATTERN MATCHING 

BASED SAR IMAGE PROCESSING ALGORITHM 

In this section we introduce our three-step method to locate 

the center of a partially-covered tropical cyclone in a SAR 

image. Before the three-step procedure is applied, the tropical 

cyclone SAR image is denoised with a Probabilistic 

Patch-Based filter (PPB filter) [21]. Speckle noise in  SAR is a 

type of multip licative noise that reduces the actual resolution of 

the SAR image, and may affect target identification and 

sometimes cause features to disappear in  the image. The 

existence of speckle noise makes extracting useful informat ion 

directly from the SAR image difficult. So de-noising of the 

tropical cyclones SAR images is necessary. The PPB filter, 

which is considered as one of the best SAR image denoising 

method in recent years, can effectively remove the speckle 

noise in the homogeneous regions while preserving edges and 

shapes at the same time. 

A. Salient Region Detection Algorithm to Produce a 

Rain-Band Map 

The automatic center location of t ropical cyclones without 

eyes using pattern matching methods usually needs the help of 

rain band information. Therefore we need to obtain the spiral 

informat ion of rain bands before matching. Researchers often 

segment satellite cloud images using a threshold segmentation 

method [17] [19] [20]. These algorithms usually work well 

when the gray levels of the rain bands are obviously different 

from the gray levels of other regions. This is easy but not very 

effective when the gray levels of rain bands are more or less the 

same as those of other cloud clusters, which makes it  hard to 

distinguish rain bands from other cloud clusters. Besides, 

influencing factors such as speckle noise, various 

configurations of tropical cyclone images acquired by different 

SAR instruments with different polarization, azimuth and 

spatial resolution, etc will make automatic segmentation of 

large numbers of rain bands more difficult. In addition, a 

tropical cyclone SAR image shows the sea surface imprint of a 

tropical cyclone with little texture informat ion. Therefore we 

consider obtaining rain bands by salient region detection. 

In computer vision, salient reg ions are defined as regions that 

attract human visual attention at the earliest visual processing 

when looking at an image. Salience is based on a variety of 

visual stimulat ion, such as color, brightness, texture, shape, 

edge, etc. High contrast between stimuli creates space 

reorganizat ion of the receptive field cells, attracting the 

attention of the observer. That is the occurrence of the salience 

(e. g. [22]-[24]). People tend to rap idly search for the most 

important parts and ignore the less important parts when they 

watch an image based on vision task and their prior knowledge. 

This selective attention mechanism enables people to 

efficiently capture the areas that they are interested in. These 

captured areas can be called the focus of attention areas [25] or 

salient regions [26]. 

Since Itti and Koch proposed a model of saliency-based 

visual attention based on the human visual attention selective 

mechanis m [27], visual salient region detection has become a 

popular research topic and many methods have been proposed 

(e. g. [27]-[37]). Although different saliency detection methods 

are based on different hypotheses different theories, they all 

have one common characteristic: they focus on the 

“center-surround” difference. For a t ropical cyclone SAR 

image, the major characteristic that makes a tropical cyclone 

different from its surroundings is the gray values contrast and 

its special spiral structure associated with rain bands, so the 

gray values contrast and orientation informat ion can be used for 

salient region detection. Besides, little  texture information in a 

tropical cyclone SAR image is propitious to salient region 

detection based contrast. Based on these advantages  we 

propose a salient region detection method based on gray value 

contrast and orientation information. 

 
Fig. 1.  A flowchart of our method. 

  

Page 9 of 18 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, 2016 

 

4 

Standard deviation, the average value of the distances from 

each data set to the mean value in a data set, reflects the degree 

of the discrete degree of the data set. Given an  image patch, if 

the standard deviation of the g ray values of the pixels is large, 

the contrast of the adjacent pixels is also large. This means the 

gray values change greatly and there may be context  change in 

the image patch. As mentioned above, the gray values of clouds 

of a tropical cyclone are different from those of its surrounding 

background in a tropical cyclone SAR image. So we can 

consider that the salient spiral structure is next to, or contained 

in, the regions with a large standard deviation. We can divide an 

image into patches with a sliding window, whose step is half of 

its side length. We can then calculate the standard deviation of 

each patch. Generally, the standard deviation of a patch 

containing two or more kinds of homogenous regions is larger 

than that of a patch containing only one kind of homogenous 

region. So a patch with a larger standard deviation can be 

considered more salient. Fig. 2 shows patches with different 

standard deviations. As shown, patch P1 is a homogenous 

region where the values of the p ixels are more or less the same, 

so its standard deviation is small. But there is a context change 

in patch P2 and the values of the pixels in it are d ifferent, so its 

standard deviation is large. The larger the standard deviation, 

the more salient the corresponding patch. We get a gray value 

contrast feature map after normalization of all the standard 

deviations.  

Since there are some irrelevant patterns  whose gray values are 

similar to these of the rain bands, we may not extract the exact 

salient region only  with g ray value information. We further 

look at the spiral structure of rain bands that contain obvious 

orientation information. So we also make use of orientation 

informat ion with Gabor features to improve the degree of 

saliency. 

A 2D Gabor filter was first applied by Daugman [38] in the 

field of computer vision. The 2D Gabor filter has a visual 

characteristic and biology background. It can be seen as a good 

approximation  to the sensitivity profiles of neurons found in the 

visual cortex of h igher vertebrates [39].  The Gabor features 

have good directional characteristics that are sensitive to edge 

informat ion. The Gabor filter will respond strongest if the 

filter’s orientation is consistent with the orientation of specific 

features in an image. In addition, it is good at multi-frequencies 

and in mult i-orientations, and is non-sensitive to light change. 

These advantages make the Gabor filter widely used in visual 

informat ion extraction, pattern recognition and image 

processing. The 2D Gabor filter can be written as: 

 (   )  
 

   2    . 
  2   2

  2
/     ,   (       )-         (1) 

Where                and              , θ is 

the orientation,  is the scaling parameters of the filter and 

(   )  is the center frequency. The Gabor filter has good 

direction selectivity in the spatial domain and frequency 

selectivity in  the frequency domain by choosing different 

directions and adjusting the frequency. The Gabor feature of an 

image  (   ) is the convolution of the image and the Gabor 

filter  (   ). 
We calculate the Gabor features of a tropical cyclone SAR 

image in  four orientations  (               ). Then the Gabor 

feature map is obtained by combin ing the four orientation maps 

with weights. Reg ions with high gray  values in the Gabor 

feature map have more d irectional information. Then we 

combine the Gabor feature map and the gray value contrast 

feature map with different weighting to construct the final 

salient region map.  

 

B. Rain Bands Selection with Two Filter Criteria 

After the salient region detection, outlined in the previous 

section, the salient region map of a SAR tropical cyclone image 

is obtained. Regions with high gray values in the salient map  

are mainly rain  bands. The skeleton lines of rain  bands make 

their spiral shape and rolling tendency intuitive and visual. It is 

easy to understand and convenient to process spiral informat ion 

by computer. So in this section we consider how to ext ract the 

correct skeleton lines of rain bands for pattern matching. 

 
Fig. 2.  Different patches with different standard deviation. Patch P1 passes 

through an edge of a rain band and contains a part of the rain band and a part 
of the background. Gray values of the two parts are different. Patch P2 only 
contains a part of the background, whose gray values are more or less the 

same. So Patch P1 has a bigger standard deviation than patch P2. 
  

 
Fig. 3.  Gabor feature maps of different orientations for a Cyclone SAR image. (a) A 

cyclone SAR image. (b), (c), (d), (e): Gabor feature maps when the orientation 
are   ,    ,     and     . When the orientation are    and    , the rain bands are 
disappeared or fuzzy. While when the orientations are     and     , the rain bands 

are obvious. (f): The combined Gabor feature map. 
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First of all, we need to get rain bands which have an obvious 

shape characteristic. Salient region detection has eliminated 

most of the irrelevant parts of the image. Regions with high 

gray values in the salient map are mainly rain bands. However, 

there are other irrelevant minor features, too. The combination 

of several minor features may also reflect a spiral tendency, but 

their skeleton lines are not continuous. Therefore, they cannot 

be used for pattern matching. To avoid the interference of 

minor reg ions, we segment the salient region map of a SAR 

tropical cyclone image into a binary image by a threshold, and 

then remove regions with small areas in the b inary image with 

two filter criteria. So the first filter criterion is by area of region. 

We calculate the area of each region in the binary image, 

arrange them in order of area and only keep the several largest 

regions. Small reg ions are deleted with the first filter criterion. 

The second filter criterion evaluates the distance of the left-top 

point and the right-bottom point of a remained reg ion. Several 

regions with the longest distances can be remained. We remain  

the one region with the longest distance for automatic 

computation. As shown in Fig. 6(g) - Fig. 11(g), reg ions with 

long and thin strips are kept when the second filter criterion was 

applied. 

 

C. Skeleton Lines Extraction with Morphology and Pruning 

The edges of the rain bands in a SAR image are irregular 

with protrusions and hollows. If we ext ract skeleton lines 

directly, it will contain branches. If there are holes in the rain  

band regions, the skeleton line will contain circular rings. All 

these conditions will affect the continued pattern matching. 

Here we take two measures to obtain smooth skeleton lines. 

Firstly, the rain bands are expanded using morphologic 

operators before extract ion of the skeleton lines  [40]. The 

hollows are filled  and the edges of the connecting domains are 

smoothed, reducing the possibility of the skeleton lines forking. 

Secondly, the little branches and protrusions of the skeleton 

lines are pruned [41]. The two steps can be iterated if necessary. 

As shown in Fig. 6(i) - Fig. 11(i), the skeleton lines are smooth 

without additional branches, while the spiral shape of the 

original connected domains  is preserved. 

 

D. Particle Swarm Optimization Algorithm to Estimate 

Tropical Cyclone Centers Based on Pattern Matching 

We focus on pattern matching to estimate tropical cyclone  

centers in this section. Here we choose an analytical model of 

two-dimensional surface storm-relative inflow angle in a 

tropical cyclone to estimate tropical cyclone centers. Zhang et 

al. (2012) presented an analysis of near-surface inflow angles 

using wind observation data from over 1600 quality-controlled 

global positioning system dropwindsondes deployed by aircraft 

on 187 flights into 18 hurricanes and proposed a parametric 

model of inflow angle based on these observations and analysis 

[42]. Here the inflow angle     can be defined as the arctangent 

of the ratio of radial wind component    to tangential wind 

component    . Analysis results in the reference indicate a 

statistically significant dependence of inflow angle on the 

radial distance from the tropical cyclone center. 

The model is defined as follows: 

   
(            )     

(       
)     

(          
)  

   ,     
(     )-                                                               (2) 

where   is the azimuth angle measured clockwise from 

tropical cyclone mot ion direction,      is the maximum wind 

speed,    is the t ropical cyclone mot ion speed and   is the 

model error.    
 

    
, where r is the radial distance measured 

in a polar coordinate system and      is the radial d istance of 

maximum wind speed.         and    are defined as: 

         
                                                                 (3)  

         (    
           )                                           (4)  

         
                                                                     (5)  

The coefficients (     ) are shown in Table 1. The above 

inflow angle model is developed based on a subset of the full 

observation sample and he coefficients of     is the most 

accurately estimated quantity while the coefficients  of     is 

the least. 

Given the skeleton line      of a rain  band, we can obtain all  

the pixels *(     ) (     )      +  on it.    is the Euclidean 

distance from one point (     )  on the skeleton line to the 

center of the tropical cyclone (     ) which we want to get. We 

can define the normalized distance   
  as: 

  
  

√(     )
2 (     )

2

√(       )
2 (       )

2                                                (6) 

where  (         )  is the position of the maximal wind  

speed. The corresponding azimuth can be defined as: 

         .
     

     
/                                                              (7)  

Given a tropical cyclone wind speed data, we can get the 

informat ion about the maximal wind speed      and its 

position (         ) and the tropical cyclone motion speed   . 
If we also know the center (     )of a tropical cyclone, we can  

get    and  . Then the inflow angles can be determined with  

parameters  (            ). 
If the inflow angle values along a skeleton line are known, 

the key to solve the matching problem is to find the best 

combination o f parameters(     ) which  makes the calcu lated 

inflow angles using formula (2) best match the given inflow 

angles. We can then treat the matching problem as an 

optimization problem. A candidate combination of parameters 

(   
    ) corresponds to an estimated in flow angle set. When 

we find the optimal combination of parameters  (      
       

), 

the estimated inflow angles are closest to the given inflow 

angles. It means the optimal (      
       

) is closest to the real 

tropical cyclone center. So the optimization problem here is to 

TABLE I 
PROPERTIES    COEFFICIENTS FOR THE INFLOW ANGLE MODEL IN EQUATION 

(3) (4) (5). 

Equation Variables a b c 

(3)    𝐴𝛼0
 -0.90 -0.90 -14.33 

(4) 𝐴𝛼1
 0.04 0.05 0.14 

(5) 𝑃𝛼1
 6.88 -9.60 85.31 
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find the optimal (      
       ) on a skeleton-line image. 

As mentioned in  Section 1, the simple and easy Hough 

transform was often used as the matching method in previous 

work [17]. However, it  only performs well on part of the 

matching pixels, and it is difficult to reach a good matching 

result. Wong et al. used a genetic algorithm to match skeleton 

lines with a logarithm spiral [19]. The genetic algorithm is 

robust and has global search ability. However, the crossover 

operator and mutation operator of the genetic algorithm guide 

the search iterative process randomly. So  they provide the 

opportunity to evolve but inevitably produce the possibility of 

degradation at the same time. There will be a lot of redundant 

iteration when the solution reaches a certain range, resulting in  

a low efficiency of exact solutions. 

Different from the genetic algorithm, the Particle Swarm 

Optimization algorithm (PSOA) proposed by Eberhart and 

Kennedy [43] is simpler and more effective with fewer input 

parameters required. The calculat ion converges to the optimal 

solution quicker. These advantages make the PSOA widely  

used in optimizat ion problems (e. g. [44]-[47]). We chose the 

PSOA to search the optimum solution to solve the matching 

problem.  

The PSOA is based on research of birds’ predation. We 

suppose that a flock of birds is searching for food randomly. If 

there is only one piece of food, the easiest but most effective 

strategy to find the food is to search the surrounding area of the 

bird which is nearest to the food. This idea is used in the PSOA. 

Here we can consider the best center (     ) as the food. A 

solution (an estimated center) for the optimizat ion problem is 

considered to be the position of a b ird, which is also called a 

particle. The method involves in inputting a binary image of 

skeleton lines, counting the number of lines and getting all the 

pixel positions of each skeleton line. Then it is necessary to 

initialize the position and speed of the original searching 

particle (parameters (     ) ). Every particle has its own 

position and speed, which determines its direction and distance 

of flight. The current position of each part icle is in itialized  as its 

original best position (it can be called       ). There is a fitness 

value determined by a fitness function. The corresponding 

fitness value z of each part icle  is calcu lated using the fitness 

function. The best fitness value is considered to be the global 

fitness value. The global best position is init ialized (it  can be 

called       ) with the position of the particle having the best 

fitness value. Then each particle adjusts its speed and position 

according to       and its own speed and position. The fitness 

value z of each particle is calculated. If the fitness value of one 

particle is better than its current      , the current       moves 

into its position. If the best       of all part icles is better than 

the current      , move the current       into the position of 

the particle having the best      . The process reiterates until 

the optimum solution is found or the iterative time has been 

reached. 

A matching result can be evaluated by the degree of error 

between a given inflow angle     and the estimated in flow 

angle  . The s maller the error is, the better the matching result 

is. Suppose that there are N pixels on a skeleton line and we 

know their inflow angles  {    
} , the fitness function can be 

defined as: 

  |    
 *   

(  
      

)     
(  

         
)  

   ,      
(  

    )-   +|                                                      (8) 

If we do not know the inflow angles, we can change the 

fitness function. The mean inflow angle in t ropical cyclones 

         is found to be             (95% confidence) [42], 

which agrees well with the previous results [48]. Therefore the 

fitness function can be changed as: 

  |
∑ {  0(  

      )   1(  
         )    [     1(  

    )]  } 
  1

 
 

        |                                                                                    (9) 

The speed and position of each particle can be changed using 

formulae (10) and (11). 

                   (                   
)  

         (                   )                                  (10) 

 
Fig. 4.   Scheme of the PSOA. 

  

 
Fig. 5.  The geographical positions of the six Tropical cyclones and their wind 

speed. (a) Tropical cyclone Franklin captured on 22:16:05, July 28
th
, 2005. (b) 

Tropical cyclone Bilis captured on 09:34:35, July 11
th
, 2006. (c) Tropical cyclone 

Karl captured on 08:56:44, September 20th, 2004. (d) Tropical cyclone Nesat 
captured on 09:30:39, June 5

th
, 2005. (e) Tropical cyclone Etau captured on 

20:58:22, August 5
th
, 2003. (f) Tropical cyclone Jova captured on 15:34:15, 

September 22th, 2005. 
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                                                                   (11) 

where    and    are acceleration coefficients, and       

and       are random numbers between 0 and 1. 

The optimum solution of (     ) can be considered as the 

center of the tropical cyclone. Somet imes there may be several 

spiral lines after the extraction of skeleton lines. Each spiral line 

has an optimal solution. The optimal center achieved by one 

matching spiral line may not be the optimal solution of another 

matching spiral line. Theoretically there is a center point which 

is the compromised optimal solution fo r all the spiral lines. 

Hence we take the average of all optima as the final center 

point.  

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The data used in our experiments  are RADARSAT-1 SAR 

tropical cyclone images. RADARSAT-1 C-band SAR images 

of tropical cyclones have been acquired worldwide since 1998 

to support scientific research through the Hurricane Watch 

program which is a collaborative program between the National 

Oceanic and Atmospheric (NOAA), the Canada Centre for 

Remote Sensing (CCRS) of Natural Resources Canada and the 

Canadian Space Agency (CSA) [49]. These images are 

ScanSAR wide beam (SCW) images with a medium resolution 

of 100 m and a swath of 450 km. They are horizontal-t ransmit  

and horizontal-receive (HH polarization) data. The six t ropical 

cyclones and their positions are shown in Fig. 5. Fig. 5(a) 

contains the full structure of tropical cyclone Franklin while the 

eye area is fuzzy. Fig. 5(b) – Fig. 5(f) contain the other five 

partially-covered tropical cyclones in SAR images. 

We compute the salient region maps from the denoised 

images (Fig. 6(b) - Fig. 11(b)). To get a gray value contrast 

feature map, an image is first div ided into patches using a     

sliding window. Each step of the sliding window is half of its 

length. If the sliding window is too large, there will be a serious 

blocking effect, and a large number of unrelated areas will be 

contained in the gray value contrast feature map. If the slid ing 

window is too small, the difference within each patch will not 

be well presented. In addition, the rain-band regions will be 

discontinuous and holes will easily appear in the connected 

domain. These side effects will affect the later extraction of 

skeleton lines. Then the standard deviation of each patch is 

calculated and normalized. The larger the standard deviation 

value, the more context change a patch has. Usually we use a 

threshold to remainder patches with a large standard deviation 

value. As shown in Fig. 6(c) - Fig. 11 (c), a  gray value contrast 

feature map can indicate the position of rain bands. The parts 

with higher pixel values mainly contain rain bands. 

Then we make use of orientation information by calculating  

the Gabor features. The Gabor features of a denoised tropical 

cyclone SAR image are calcu lated in four orientations  (0
o
, 45

o
, 

90
o
, 135

o
), and then the Gabor feature map is obtained using a 

weighted combination of four orientation maps. As shown in 

Fig. 3, experiments indicate that rain bands are more obvious in 

the 45
o
 and 135

o
 orientation angles. Therefore, to  distinguish 

rain bands from other objects, an orientation map of 45
o
 and an 

orientation map of 135
o
 are given higher weights  of 0.4, and an 

orientation map of 0
o
 and an orientation map of 90

o
 are given 

lower weights of 0.1. As shown in Fig. 6(d) - Fig. 11 (d), the 

Gabor feature maps indicate the obvious rolling tendency and 

rain bands with higher pixel values. 

We get the final salient reg ion map by a weighted 

combination o f the gray  value contrast feature map  and the 

Gabor feature map. As shown in the Fig. 6(e) - Fig. 11 (e), rain  

bands are salient in the final salient reg ion map. After that, we 

segment the final salient reg ion maps into binary images. 

Regions with higher p ixel values remain. For some small and 

unrelated regions in  the binary  image, we used the two filter 

criteria mentioned in section 2.2 to select the rain bands regions. 

As shown in Fig. 6(f) - Fig. 11 (f), small and unrelated reg ions 

are deleted. The remaining region appears as long and thin lines, 

which represent the characteristics of rain bands. However, 

there are still holes in some rain bands regions so we use the 

expansion operator to solve this problem. After extracting the 

skeleton lines, pruning is operated to avoid the influence of 

burrs. Expansion and pruning can be repeated to ma ke the 

skeleton lines smoother as shown in Fig. 6(i) - Fig. 11 (i). 

 
Fig. 6.  (a) The SAR image of Tropical cyclone Franklin. (b) The denoised SAR 
image. (c) The gray value contrast feature map of the denoised SAR image. (d) The 
Gabor feature map. (e) The salient region map. (f) Remaining regions after selection 

filter criterion 1. (g) Remaining regions after selection filter criterion 2. (h) The 
skeleton lines of rain bands. (i) The smooth skeleton lines after pruning.  
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Finally, using the PSOA, we match each skeleton line with a 

given model. Here we set         and    . The size of 

the particle is 20 and the number of iterations is 200. The center 

of a tropical cyclone may be out of the SAR image if there is no 

eye in the SAR image. Suppose the range of an image is     , 

we expand the search range of PSOA to        or      . 

The initial position and velocity of particles are given randomly.  

According to the pixel position set *(     ) (     )      + of a 

skeleton line using the procedures outlined in section 2.4, we 

calculate the optimal solution of matching with the PSOA. If 

there are several skeleton lines in  a b inary image, we calcu late 

the optimal solution of each matching skeleton line and then 

take an average of all the optima as the final tropical cyclone 

center. The center location results are shown in Fig. 12. We can 

see that the centers are within the images in Fig. 12(a) and Fig. 

12(b), but the centers are out of the images in  the other four 

figures. We can not estimate whether the results are correct if 

there are no centers in the SAR images. In order to evaluate the 

accuracy of our center location results, we compare the 

estimated center with the NOAA Best Track Data sets in Table 

2 and Fig. 13. The NOAA Best Track Data is an archive of 

global history tropical cyclones since 1842. The in formation is 

obtained from NOAA’s program “International Best Track 

Archive for Climate Stewardship (IBTrACS)”. The data 

contain the center position (usually it is the latitude and 

longitude) and the intensity (described by the maximum wind 

TABLE П 
PROPERTIES  ESTIMATED CENTERS WITH OUR METHOD AND CENTERS FROM THE BEST TRACK DATA SETS RECORDS BEFORE AND AFTER T HE T IME 

T HAT SAR IMAGES ARE CAPTURED ON. THEORETICALLYT THE ESTIMATED CENTER OF A CYCLONE IS BETWEEN THE CENTER POSITIONS ON THE TWO 

RECORDED T IME. 

Tropical 
cyclone 

UTC Time Estimated 
center(Lat, Lon) 

UTC Time 
before 

Best Track 
center(Lat, Lon) 

UTC Time 
after 

Best Track 
center(Lat, Lon) 

Franklin 2005.07.28 
22:16:05 

(37.9,-67.2) 2005.07.28 
18:00:00 

(37.1,-68.0) 2005.07.29 
00:00:00 

(38.4,-66.6) 

Bilis 2006.07.11 
09:34:35 

(19.5, 128.4) 2006.07.11 
06:00:00 

(19.1,128.9) 2006.07.11 
12:00:00 

(19.8,127.9) 

Karl 2004.09.20 
08:56:44 

(17.0, -45.3) 2004.09.20 
06:00:00 

(17.0, -45.2) 2004.09.20 
12:00:00 

(17.5, -46.0) 

Nesat 2005.06.05 
09:30:39 

(18.3, 131.3) 2005.06.05 
06:00:00 

(18.1, 130.9) 2005.06.05 
12:00:00 

(18.9, 131.3) 

Etau 2003.08.05 

20:58:22 

(19.5, 129.6) 2003.08.05 

18:00:00 

(20.5, 130.3) 2003.08.06 

00:00:00 

(21.5, 129.5) 

Jova 2005.09.22 
15:34:15 

(19.7,-148.2) 2005.09.22 
12:00:00 

(19.4,-147.9) 2005.09.22 
18:00:00 

(20.1,-148.5) 

 

 
Fig. 7. Results of the SAR image of Tropical cyclone Bilis. Caption of each figure is 

the same as these in Fig. 6. 

 
Fig. 8. Results of the SAR image of Tropical cyclone Karl. Caption of each figure is 

the same as these in Fig. 6. 
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speed or the lowest central air pressure) of a tropical cyclone at 

a certain  time and other information. The NOAA Best Track 

data is updated every six hours. As a result, the locations of the 

tropical cyclone centers at the SAR imaging times are 

interpolated from the two  nearby Best Track data records. The 

estimated center position of a tropical cyclone should between 

the center positions at the two recorded times. Table 2 shows 

each estimated center’s position and the two center positions on 

the two above recorded times in the best track data set. Using 

linear interpolation, we draw a straight line between the center 

positions before and after the time that each SAR image was 

captured. Then we point out the estimated center position in the 

same figure. Theoretically the estimated center position should 

be on the line. We can see that the estimated centers of tropical 

cyclone Franklin and Bilis are almost on the straight lines, and 

those of tropical cyclone Karl, Nesat and Jova are close to the 

straight lines. Their longitude and latitude are respectively 

within the range of the center position recorded before the 

imaging t ime and the position recorded after the image capture 

time. However, the estimated center position of tropical 

cyclone Etau is far away from its straight line and its longitude 

and latitude are a little out of the range. These samples illustrate 

that our method is effective in most cases but it is not 

sufficiently good. A large number of experiments prove this. 

The inflow angle model is proposed based on the analysis of 

observation data. It is suitable for many tropical cyclones but 

not all tropical cyclones. In addition, the initialization of 

particles and the change strategy of particle positions of the 

PSOA will both affect the optimization results .  

In order to prove the accuracy and convergence of the PSOA, 

here we compare the PSOA and another optimizat ion 

algorithm – the Genetic Algorithm (GA) in our experiments. 

The GA was proposed by Holland [50] and widely used for 

optimization problems, artificial intelligence, etc for its 

robustness and global search ability. Wong et al. [19] used the 

GA to match skeleton lines with a logarithm spiral and 

achieved good results. The PSOA and the GA have many 

common features: They  both init ialize random population, use 

the evaluation function to measure the quality of the individual, 

and carry out the next search according to the fitness value 

achieved by the evaluation function. Parameters are set as 

follows in experiments: the population size of both the GA and 

the PSOA is set to 20 and the iteration number is set to 200. The 

cross probability  in  the GA is set to 0.9 and the mutated 

probability is set to 0.01. The accelerat ion coefficients c1and c2 

are both set to 2 and w is set to 1 in the PSOA. 

Fig. 14 shows that the optimal solution of the PSOA appears 

at more or less the 20
th

 iteration, while the optimal solution of 

the GA appears at more or less the 50
th

 iteration. The search 

performance of the PSOA is much better than that of the GA. 

That is because the PSOA changes particle positions more 

randomly  and with less complexity  than the GA which needs 

selection, crossover and mutation operators. Besides,       
and gbest in the PSOA allows particles to inherit more targeted 

informat ion and the searching and updating always follow the 

current gbest, searching the optimum solution in the shortest 

time. All particles in the PSOA follow the current       in the 

search process and they tend to be the same in the later stage. 

This suggests that the solution can no longer be optimized when 

it reaches certain accuracy. Different from the PSOA, 

chromosomes share information in GA, so the whole 

population moves to the optimum solution uniformly. These 

comparisons illustrate that the PSOA is simpler to use without 

adjusting as many parameters as the GA, and it reaches the 

optimum solution faster. So the PSOA is a better choice if there 

 
Fig. 9. Results of the SAR image of Tropical cyclone Nesat. Caption of each figure 

is the same as these in Fig. 6. 

 
Fig. 10. Results of the SAR image of Tropical cyclone Etau. Caption of each figure 

is the same as these in Fig. 6. 
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is no high precision requirement.  

IV. CONCLUSION 

In this paper, we address the problem of the semi-automat ic 

center location of tropical cyclones without eyes in SAR 

images. In order to get precise matching results with the 

assistance of spiral rain bands of tropical cyclones, we 

proposed a location method based on salient region detection 

and a PSOA for SAR images. Our work contains three main  

steps: 1) We propose a salient region detection method based 

on the contrast of gray values and the Gabor features. The final 

salient region map reflects the spiral structure of rain bands. 

Rain bands can be effectively extracted with our method. 2) We 

give two  filter criteria to select rain  bands that can be used for 

effective matching. 3) After obtaining the skeleton line of spiral 

rain bands, we transform the matching problem into an 

optimization problem and use the PSOA to search the optimum 

solution. To prove accuracy and convergence, we compare the 

PSOA results with the GA results. Experiment results show that 

tropical cyclone centers can be precisely located. 

This work is a meaningful attempt to estimate the tropical 

cyclone center with a single SAR image. It applies to cases that 

only contain partial structure of a tropical cyclone without eye. 

It also applies to cases that contain the whole structure of a 

tropical cyclone with fuzzy eye. It proposes a rain bands 

extraction method by taking advantage of the pixel gray level 

contrast between the tropical cyclone and the background and 

the orientation information in a SAR image. Our experiments 

indicate that the method is effective in  most cases. In pract ical 

applications it  may be not so effective when there is an island in  

the tropical cyclone SAR image or the gray level of the tropical 

cyclone is close to that of its background. Then the continuous 

and smooth skeleton lines of rain bands are extracted by two  

filter criteria and morphologic operations. It is convenient for 

the following matching problem to use an inflow angle model. 

It can also use a geometric model such as the logarithmic spiral 

to match the skeleton lines to solve the center estimat ion 

problem [12]-[15]. The two steps can be widely used for 

tropical cyclone analysis from the view of image processing. 

All SAR images used in this study are C-band horizontal 

polarization images. Although L-band (ALOS-1 and -2) and 

X-band SAR satellites (TerraSAR, Tandem-X, and 

Cosmo-Skymed) are currently  in o rbit, the number of images 

covering tropical cyclones is extremely rare. As a result, we do 

not have SAR images acquired in other bands to perform 

similar analyses. However, we believe that the technique 

developed here can be applied to SAR images acquired at 

different bands and polarizations. 

There are some limitations that we need improve in the 

 
Fig. 11. Results of the SAR image of Tropical cyclone Karl. Caption of each figure 

is the same as these in Fig. 6. 

 
Fig. 12. The center location results of six tropical cyclones. The red * 

indicates the positions of centers. 
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future. We need to adjust several parameters and this means the 

method will not be fully-automatic. Then an inflow angle 

model is proposed based on the analysis of near-surface inflow 

angles using the wind observation data of a number of t ropical 

cyclones. This works well for some tropical cyclones but may 

not work well for all tropical cyclones. We need to consider the 

universal applicability of a model. Here we focus on estimat ing 

tropical cyclone centers with a single SAR image from the 

aspect of image processing. It would be interesting to solve this 

problem by combining other data information such as wind 

field, image sequence, etc in future studies. 
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cyclone Bilis in Fig. 7. (c) Tropical cyclone Karl in Fig. 8. (d) Tropical cyclone 
Nesat in Fig. 9. (e) Tropical cyclone Etau in Fig. 10. (f) Tropical cyclone Jova in 

Fig. 11. 

 
Fig. 14. Fitness values curves of PSOA and GA. 
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